
React Fundamentals
In addition to some full-stack development!

$whoami

> Jarrod Servilla

> CSSC Tech Director

> Daniel Laufer

> GDSC Workshop lead

> Milind Vishnoi

> GDSC Workshop lead

What youʼll learn
● What is React?
● What is JSX?
● Creating reusable react components
● Dynamic rendering
● Component lifecycle
● React hooks & why we use them
● Full stack development fundamentals
● Networking protocol basics (http)

youʼll create your own full
stack app!

and most importantly...

(kind of)

important resources
source code: https://github.com/utm-cssc/full-stack-react-workshop

gdsc workshops: https://github.com/Daniel-Laufer/GDSC-UTM-Workshops

cssc site: https://cssc.utm.utoronto.ca/

if you’re coding along with us:

● an ide (vscode)
● node.js
● docker

https://github.com/utm-cssc/full-stack-react-workshop
https://github.com/Daniel-Laufer/GDSC-UTM-Workshops
https://cssc.utm.utoronto.ca/
https://docs.docker.com/get-docker/

What is React?

● a declarative, component-based
front-end javascript library developed
by Facebook

● enables developers to build modern,
sleek, fast applications with a modular
infrastructure

● react is by far the most popular front-end
javascript library/framework!

Who uses React?

And soooooooo many more!

Why should you use react?
● can organize parts of the UI into components that can be easily

reused
● users can interact with the website without refreshing it

○ Ex. dynamically rendering search results from a search query
● you want to make use of its rich ecosystem and large community

support
○ if you search “how do I do X with react”, odds are there will be many

relevant search results
○ there are tons of react libraries for you to use. For example:

react-spring allows you to add sophisticated, good-looking animations
into your apps

○ users can share their own components with the community by creating
packages

What are React Apps made of?
● Primary Javascript and JSX (a ‘syntax extension’ for

Javascript).
○ Note that you can use plain Javascript to write React code but

it’s much more difficult/messy

● JSX looks a lot like standard HTML

Let’s take a look at an example!

Say we want to create this
beautiful component ----- >

this is the Javascript and JSX code
needed to create this component

the raw html generated by this code. Looks extremely similar right?

Components
A React component is a JavaScript function that optionally
takes in inputs (props) and returns ONE JSX element (this one
element can have many children).

our simple TodoItem component Using our component and
passing data (props) into it

* you can also create components using classes but we won’t discuss that in this workshop :)

Using components
components can be rendered in two ways:
with and without children.

return (
<Navbar />

<PageWrapper>
<Navbar />

</PageWrapper>
);

Here Navbar is a child of PageWrapper

Using components
● You can continue nesting components as much you’d like!
● For example...

<PageWrapper>
<Navbar />
<div>

<PageWrapper>
<Navbar />
<Navbar />
<Navbar />

</PageWrapper>
</div>

</PageWrapper>

JavaScript inside JSX components
you may have seen us wrap some portions of code in curly
braces i.e {...}. Why is that?

● here everything outside the ‘{..}’ is JSX, and everything inside is javascript.
● if we didn’t have the curly branches there, our javascript code would be

interpreted as a string and NOT code (ie “messages.reduce((prev, curr) ⇒
prev.concat(curr), "")”)

Before we get into coding, letʼs take a
look at some interesting JavaScript

syntax you will see Jarrod use

two ways of writing functions in Javascript

think of these as being equivalent function definitions for this
workshop. (There are some more technical differences between
these two functions but don’t worry about them for now 😉)

using components: destructuring objects

here is a component that takes in
multiple props.

the { … } is called object
destructuring, which pulls out the
values from the props object and
exposes it to us as url, title, and
msg respectively.

● just think of javascript doing
this behind the scenes
automatically for you.

● a lot less coding for us!

destructuring objects: continued

x, y = [1, 2]

Time to Code!

Dynamic rendering
how do we render based on input?

Dynamic rendering

Suppose you wanted to create a component like this that
contains an arbitrary amount of children

one of the strengths of react is that we can use javascript to
render React elements dynamically!

instead of doing this….

… do this!

It’s basically just a fancy for loop that generates a list of react elements!

Time to Code!

lifecycle + hooks
updating the view after modifications occur

component lifecycle

🌱 mounting: component initialization, and addition to dom

🔄 updating: when props/state of a component changes,
rerender!

⚰ unmount: cleanup component resources, remove from
dom

hooks

Hooks was introduced in React 16.8
Hooks let you use state and other React features
without writing a class.

why hooks?

● no one knows how “this”
works.

● organizing our
components by lifecycle
methods forces us to
sprinkle related logic
throughout our
components.

● Makes testing easier

useState
this react hook allows us to persist data across re-renders
(and forces a re-render when our state changes) in that
state!
In the example function
you can create a count
state for the component
using useState as shown.
You can use count to
access count within the
component.

useEffect

this react hook allows us to run code (fetching data,
updating state) when changes occur in the states
specified.

useEffect as componentDidMount

We can use ‘useEffect’ to implement
‘componentDidMount’ function.

useEffect as componentWillUnmount

We can use ‘useEffect’ to implement
‘componentWillUnmount’ function.

create custom hooks

When we need to use function logic in more than
one component we can extract that logic into
another function (hook).
A custom hook is a JavaScript function whose name
starts with ”use” and that may call other hooks.
for example: using a custom hook to fetch data for
different URL.

creating custom hooks

Custom hook
Using the custom hook

Time to Code!

full stack apps
how do we persist data?

Client Server Database

API: Application Programming Interface

createTodo(message)

deleteTodo(todoid)

editTodo(todoid, message, ...)

URL: Universal Resource Locator

/todos

/todos/<id>

/todos?todoid=<id>

/todos?maxPages=<num>

https://my-domain.api.com

HTTP: Hypertext Transfer Protocol

/todos/<id> [GET]

/todos/<id> [DEL]

/todos?todoid=<id> [GET]

/todos?maxPages=<num>

https://my-domain.api.com

200 OK: The response has succeeded!

201 Created: The request has succeeded, and the resource has been created (usually for POST)

400 Bad Request: The server could not understand the request due to invalid syntax

401 Unauthorized: The client is not allowed to get the requested response

404 Not Found: The server cannot find the requested resource

418 Iʼm a teapot: The server refuses to brew coffee because it is, permanently, a teapot.

500 Internal Server Error: The server has encountered an issue while processing your request

after issuing an http request, we expect to receive a status code and response body (typically
JSON). http statuses describe what the server did in response to the request.

api integration
connecting our frontend to our backend

Time to Code!

Thank you!
Any questions?

